Minimizing point configurations for tensor product energies on the torus
Dmitriy Bilyk, Nicolas Nagel, Ian Ruohoniemi
我们研究环面𝕋^d上最小化具有张量积结构的相互作用能量的点配置,这类问题自然出现在偏差理论和拟蒙特卡罗积分的背景下。𝕋^2上的置换集和高维空间中的拉丁超立方集(即其在坐标轴上的投影是等间距点的集合)是能量最小化的自然候选者。我们证明,在向量意义上仅有一个距离的这类点配置对于广泛的势函数都能最小化能量,换句话说,这类集合满足张量积版本的普适最优性。这特别适用于三点和五点斐波那契格。我们还刻画了具有此性质的所有格,并展示了这类的一些非格集合。此外,我们获得了关于张量积能量的全局和局部最小化器的若干进一步结构结果。
We study point configurations on the torus 𝕋^d that minimize interaction energies with tensor product structure which arise naturally in the context of discrepancy theory and quasi-Monte Carlo integration. Permutation sets on 𝕋^2 and Latin hypercube sets in higher dimensions (i.e. sets whose projections onto coordinate axes are equispaced points) are natural candidates to be energy minimizers. We show that such point configurations that have only one distance in the vector sense minimize the e...