An initial-boundary value problem describing moisture transport in porous media: existence of strong solutions and an error estimate for a finite volume scheme
Akiko Morimura, Toyohiko Aiki
我们考虑一个初始边界值问题,其动机是多孔介质中水分输送的数学模型。 我们建立了强大的解决方案的存在,并为有限量方法构建的近似解决方案提供了错误估计。 在误差估计值的证明中,Gagliardo-Nirenberg类型不等式对于连续函数和分段常数函数之间的差异起着重要作用。
We consider an initial-boundary value problem motivated by a mathematical model of moisture transport in porous media. We establish the existence of strong solutions and provide an error estimate for the approximate solutions constructed by the finite volume method. In the proof of the error estimate, the Gagliardo–Nirenberg type inequality for the difference between a continuous function and a piecewise constant function plays an important role.