A Physics-Constrained Neural Differential Equation Framework for Data-Driven Snowpack Simulation
Andrew Charbonneau, Katherine Deck, Tapio Schneider
本文介绍了一个物理约束的神经微分方程框架,用于参数化,并使用它来模拟给定水文气象强迫的季节性雪深度的时间演变。 当对来自多个SNOTEL站点的数据进行培训时,参数化预测了每日积雪深度,在各种各样的雪气候中,中位误差低于9%,纳什·萨特克利夫效率超过0.94。 参数化还推广到训练期间看不到的新站点,这对于校准的雪模型通常不是正确的。 要求参数化来预测雪水当量以及雪深只会增加误差到12%。 该方法的结构保证了物理约束的满足,在模型训练期间实现了这些约束,并允许以不同的时间分辨率进行建模,而无需对参数化进行额外的再训练。 这些好处在气候建模中具有潜力,并可能扩展到其他具有物理约束的动态系统。
This paper presents a physics-constrained neural differential equation framework for parameterization, and employs it to model the time evolution of seasonal snow depth given hydrometeorological forcings. When trained on data from multiple SNOTEL sites, the parameterization predicts daily snow depth with under 9% median error and Nash Sutcliffe Efficiencies over 0.94 across a wide variety of snow climates. The parameterization also generalizes to new sites not seen during training, which is not ...