A Recursive Lie-Group Formulation for the Second-Order Time Derivatives of the Inverse Dynamics of parallel Kinematic Manipulators
Andreas Mueller, Shivesh Kumar, Thomas Kordik
系列弹性执行器(SEA)被引入用于串行机械臂。 他们基于模型的轨迹跟踪控制需要逆动力学解决方案的第二次衍生物,为此提出了算法。 尚未对配备SEA的平行运动力学(PKM)进行轨迹控制。 关键因素是对逆动力学解决方案第二次衍生物的计算效率评估。 这在文献中尚未提出,并且首次在本文件中讨论。 PKM的特殊拓扑结构被利用回传算法来评估串行机器人的逆向动力学。 使用谎言组的公式,所有的关系都在这个框架内衍生。 对于6-DOF Gough-Stewart平台(作为外骨骼的一部分)以及应用基于平整的控制方案时,为平面PKM提供数值结果。
Series elastic actuators (SEA) were introduced for serial robotic arms. Their model-based trajectory tracking control requires the second time derivatives of the inverse dynamics solution, for which algorithms were proposed. Trajectory control of parallel kinematics manipulators (PKM) equipped with SEAs has not yet been pursued. Key element for this is the computationally efficient evaluation of the second time derivative of the inverse dynamics solution. This has not been presented in the liter...