From 2D Toda hierarchy to conformal map for domains of Riemann sphere
Yu.Klimov, A.Korzh, S.Natanzon
在最近的作品中[hep-th/9909147, hep-th/0005259]被发现可集成系统和混音函数之间的奇妙相关性。 它们减少了黎曼定理关于构象图的效能化问题,以计算2D Toda层次结构的分散极限的字符串解决方案。 在[math.CV/0103136]中,发现了泰勒系列字符串解决方案的递归公式。 这特别给出了一种计算从直到磁盘到任意域的不均构图的方法,该方法通过其谐波时刻描述。 在本文中,我们研究了这些公式的一些属性。 特别是,我们找到了泰勒系列的收敛条件,用于2D Toda层次结构的分散极限的字符串解决方案。
In recent works [hep-th/9909147, hep-th/0005259] was found a wonderful correlation between integrable systems and meromorphic functions. They reduce a problem of effictivisation of Riemann theorem about conformal maps to calculation of a string solution of dispersionless limit of the 2D Toda hierarchy. In [math.CV/0103136] was found a recurrent formulas for coeffciens of Taylor series of the string solution. This gives, in particular, a method for calculation of the univalent conformal map from ...