Involutive Division Technique: Some Generalizations and Optimizations
Vladimir P. Gerdt
在本文中,除了早期引入的不由性分裂之外,我们还考虑由可接受的一夫一妻制诱发的新一类分裂。 我们证明这些分裂是虚无的和建设性的。 因此,它们允许一个人通过顺序检查非多乘增延长的乘法减少来计算多项式理想的不自主的Groebner基础。 我们研究不自主算法对完成排序的依赖。 基于特定不自主分裂的属性,建议进行两个计算优化。 其中一个包括完成订购的特殊选择。 另一种优化与算法过程中的复计算乘法和非乘法变量有关。
In this paper, in addition to the earlier introduced involutive divisions, we consider a new class of divisions induced by admissible monomial orderings. We prove that these divisions are noetherian and constructive. Thereby each of them allows one to compute an involutive Groebner basis of a polynomial ideal by sequentially examining multiplicative reductions of nonmultiplicative prolongations. We study dependence of involutive algorithms on the completion ordering. Based on properties of parti...