Exponential polynomials and identification of polygonal regions from Fourier samples
Mihail N. Kolountzakis and Emmanuil Spyridakis
考虑所有二元指数多项式f(ξ, η) = ∑_j=1^n p_j(ξ, η) e^2π i (x_jξ+y_jη)的集合E(D, N),其中多项式p_j ∈ℂ[ξ, η]的次数<D,n≤ N且x_j, y_j ∈𝕋 = ℝ/ℤ。我们找到一个仅依赖于N和D的集合A ⊆ℤ^2,其大小为O(D^2 N log N),使得f在A上的值能够确定f。注意到A的大小仅比写出f所需参数的数量多一个对数量。我们利用这一结果来证明关于多边形区域的一些唯一性定理,给定其指示函数的傅里叶变换的一小部分样本。如果多边形区域边的不同斜率数量≤ k,则该区域可以从一个预定的傅里叶样本集合中确定,该集合仅依赖于k和最大顶点数N,大小为O(k^2 N log N)。在特别情况下,当所有边都已知平行于坐标轴时,多边形区域可以从一个仅依赖于N且大小为O(N log N)的傅里叶样本集合中确定。我们的方法是非构造性的。
Consider the set E(D, N) of all bivariate exponential polynomials f(ξ, η) = ∑_j=1^n p_j(ξ, η) e^2π i (x_jξ+y_jη), where the polynomials p_j ∈ℂ[ξ, η] have degree <D, n≤ N and where x_j, y_j ∈𝕋 = ℝ/ℤ. We find a set A ⊆ℤ^2 that depends on N and D only and is of size O(D^2 N log N) such that the values of f on A determine f. Notice that the size of A is only larger by a logarithmic quantity than the number of parameters needed to write down f. We use this in order to prove some uniqueness results a...