Regularized Reconstruction of Scalar Parameters in Subdiffusion with Memory via a Nonlocal Observation
Andrii Hulianytskyi, Sergei Pereverzyev, Sergii Siryk, Nataliya Vasylyeva
在本文中,我们提出了一种分析和数值方法来识别时间多项分数阶微分算子𝐃_t中的标量参数(系数、分数阶导数阶数)。为此,我们分析了与线性亚扩散方程𝐃_tu-ℒ_1u-𝒦*ℒ_2u=g(x,t)相关的附加非局部观测的逆问题,其中ℒ_i是具有时间依赖系数的二阶椭圆算子,𝒦是可求和记忆核,g是外力。在模型给定数据的某些假设下,我们推导了未知参数的显式公式。此外,我们讨论了这些逆问题中关于唯一性和稳定性的问题。最后,通过采用Tikhonov正则化方案和拟最优性方法,我们给出了一种从噪声离散测量中恢复标量参数的计算算法,并通过几个数值测试证明了所提出技术的有效性(在实践中)。
In the paper, we propose an analytical and numerical approach to identify scalar parameters (coefficients, orders of fractional derivatives) in the multi-term fractional differential operator in time, 𝐃_t. To this end, we analyze inverse problems with an additional nonlocal observation related to a linear subdiffusion equation 𝐃_tu-ℒ_1u-𝒦*ℒ_2u=g(x,t), where ℒ_i are the second order elliptic operators with time-dependent coefficients, 𝒦 is a summable memory kernel, and g is an external force....