Symbolic Hamburger-Noether expressions of plane curves and construction of AG codes
A. Campillo and J. I. Farran
我们提出了一种计算空间L(G)基数的算法,前提是G是非单数绝对不可简化的代数曲线的理性除数器,以及另一种计算P下的Weierstrass半组的算法以及该半组中每个值的函数,前提是P是曲线的单平面模型的理性分支。 该方法基于Brill-Noether算法,以合适的方式结合了Hamburger-Noether扩展理论和虚拟传递条件。 这种算法是通过引入符号汉堡-诺特表达式的概念来给出的。 一切都可以应用于代数几何代码的有效构建以及此类代码的解码问题,包括一点代码的冯和饶方案。
We present an algorithm to compute bases for the spaces L(G), provided G is a rational divisor over a non-singular absolutely irreducible algebraic curve, and also another algorithm to compute the Weierstrass semigroup at P together with functions for each value in this semigroup, provided P is a rational branch of a singular plane model for the curve. The method is founded on the Brill-Noether algorithm by combining in a suitable way the theory of Hamburger-Noether expansions and the imposition...