Construction of Involutive Monomial Sets for Different Involutive Divisions
Vladimir P. Gerdt, Vladimir V.Kornyak, Matthias Berth, Guenter Czichowski
我们考虑计算和实施问题,以完成单体集合使用不同的非转单位划分进行革命。 这些部门中的每一个都产生了自己的完成程序。 对于多项式的情况,它产生一个不自主的基础,这是Groebner基础的特殊形式,通常是多余的。 我们还将 Janet 部门的 Mathematica 实现与 C 中的实现进行比较。
We consider computational and implementation issues for the completion of monomial sets to involution using different involutive divisions. Every of these divisions produces its own completion procedure. For the polynomial case it yields an involutive basis which is a special form of a Groebner basis, generally redundant. We also compare our Mathematica implementation of Janet division to an implementation in C.