Newton's method for nonlinear mappings into vector bundles
Laura Weigl and Anton Schiela
我们考虑在从流形𝒳到向量丛ℰ的映射中寻找零点的牛顿法。在此设置下,需要在ℰ上定义一个联络以使牛顿方程良定义,并在𝒳上需要一个回缩来计算牛顿更新。我们使用黎曼距离的巴拿赫空间变体,基于合适的可微性概念讨论局部收敛性。我们还将仿射协变阻尼策略推广到我们的设置中。最后,我们将通过将结果应用于广义非对称特征值问题并提供数值示例来阐明我们的结果。
We consider Newton's method for finding zeros of mappings from a manifold 𝒳 into a vector bundle ℰ. In this setting a connection on ℰ is required to render the Newton equation well defined, and a retraction on 𝒳 is needed to compute a Newton update. We discuss local convergence in terms of suitable differentiability concepts, using a Banach space variant of a Riemannian distance. We also carry over an affine covariant damping strategy to our setting. Finally, we will illustrate our results by ...