Hardness of computation of quantum invariants on 3-manifolds with restricted topology
Henrique Ennes and Clément Maria
低维拓扑中的量子不变性提供了各种各样的有价值的结和3个流形的不变性,由易于计算的显式公式呈现。 它们的计算复杂性已被积极研究,并与拓扑量子计算紧密相连。 在这篇文章中,我们证明,对于Reshetikhin-Turaev模型中的任何3个多孔量子不变性,有一个确定性多项式时间算法,作为输入一个任意闭合的3个多孔M,输出一个具有相同量子不变性的闭合3流形M',这样M'是双曲面,不包含低属嵌入不可压缩的表面,并且由强烈不可还原的Heegaard图呈现。 我们的建筑依赖于Heegaard分裂和Hempel距离的特性。 在计算复杂性的层面上,这证明计算给定的量子不变的3个流形的硬度即使在严格限制输入的拓扑和组合时也能保留。 这积极回答了Samperton提出的问题。
Quantum invariants in low dimensional topology offer a wide variety of valuable invariants of knots and 3-manifolds, presented by explicit formulas that are readily computable. Their computational complexity has been actively studied and is tightly connected to topological quantum computing. In this article, we prove that for any 3-manifold quantum invariant in the Reshetikhin-Turaev model, there is a deterministic polynomial time algorithm that, given as input an arbitrary closed 3-manifold M, ...