An algebra modality admitting countably many deriving transformations
Jean-Baptiste Vienney
微分范畴是一个加法对称幺半范畴,即一个在交换幺半群上丰富的对称幺半范畴,具有一个代数模态(公理化光滑函数)以及该代数模态上的一个导出变换(公理化微分)。Lemay证明了余幺半代数模态至多有一个导出变换,因此在微分线性逻辑的模型中微分是唯一的。随后一个开放问题是这个结果是否推广到任意代数模态。我们对此问题给出了否定回答。我们在交换幺半群范畴上构造了一个自由的"带自映射的交换环胚"代数模态,其中自映射可被视为任意光滑函数。然后我们在这个代数模态上定义了一个可数的不同导出变换族(_n𝖽)_n ∈ℕ,其中参数n控制自映射的导数。这表明在微分范畴中,单个代数模态可能允许多个不等价的微分概念。
A differential category is an additive symmetric monoidal category, that is, a symmetric monoidal category enriched over commutative monoids, with an algebra modality, axiomatizing smooth functions, and a deriving transformation on this algebra modality, axiomatizing differentiation. Lemay proved that a comonoidal algebra modality has at most one deriving transformation, thus differentiation is unique in models of differential linear logic. It was then an open problem whether this result extends...