MCHex: Marching Cubes Based Adaptive Hexahedral Mesh Generation with Guaranteed Positive Jacobian
Hua Tong and Yongjie Jessica Zhang
构建自适应六面体曲面的曲面,以适应输入三角形边界,是基于网格的方法中的一个关键挑战。 常规方法首先移除外部元素(RO),然后将轴对齐边界投射到输入三角形边界上,这不能保证改善初始交叉线对联(IoU)和Hausdorff距离比(HR,w.r.t边界框对角线)。 拟议的MCHex方法用Marching Cubes方法MCHex取代RO。 鉴于相同的计算预算(使用相同的预计算签名距离场,主导运行时),MCHex提供了更好的边界近似(更高IoU和更低的HR),同时保证了更低,但仍然积极的最小缩放Jacobian(>0 vs. RO >0.48。
Constructing an adaptive hexahedral tessellation to fit an input triangle boundary is a key challenge in grid-based methods. The conventional method first removes outside elements (RO) and then projects the axis-aligned boundary onto the input triangle boundary, which has no guarantee on improving the initial Intersection over Union (IoU) and Hausdorff distance ratio (HR, w.r.t bounding box diagonal). The proposed MCHex approach replaces RO with a Marching Cubes method MCHex. Given the same comp...