SeQuant Framework for Symbolic and Numerical Tensor Algebra. I. Core Capabilities
Bimal Gaudel, Robert G. Adam, Ajay Melekamburath, Conner Masteran, Nakul Teke, Azam Besharatnik, Andreas Köhn, and Edward F. Valeev
SeQuant是一个开源库,用于在交换(标量)和非交换(操作器)环上符号代数的张量。 支持其大部分功能的关键创新是图形理论张量网络(TN)规范化器,可以比标准组理论对应器更快地处理对称的张量网络。 TN 规范化器用于常规的张量表达式的常规简化,用于优化 Wick's 定理的应用(用于将张量产品用于操作域的正法)以及用于操作导致数值评估的中间表示的操纵。 SeQuant的显着特征包括支持非协变张量网络(通常来自张量分解)和具有参数化模式模式的张量(自由度之间的依赖性自然被视为张量嵌套,“张量”在数据科学和现代量子模拟中产生的块状数据压缩)。 SeQuant通过包括编译器类组件来优化和直接解释外部数值张量代数框架,从而模糊了纯符号操作/代码生成和数值评估之间的界限。 SeQuant源代码可在https://github.com/ValeevGroup/SeQuant上找到。
SeQuant is an open-source library for symbolic algebra of tensors over commutative (scalar) and non-commutative (operator) rings. The key innovation supporting most of its functionality is a graph-theoretic tensor network (TN) canonicalizer that can handle tensor networks with symmetries faster than their standard group-theoretic counterparts. The TN canonicalizer is used for routine simplification of conventional tensor expressions, for optimizing application of Wick's theorem (used to canonica...