Homotopy type theory as a language for diagrams of ∞-logoses
Taichi Uemura
我们表明,在具有某些 lex,可访问模式的同源类型理论中,这些图具有扩展的 ∞- 徽标,使我们能够使用纯同源类型理论来推理,不仅对单个 ∞-logos 进行推理,而且还可以推理 ∞-logos 的图表。 这也提供了Sterling合成Tait可计算性的更高维度版本 - 一种用于更高维度逻辑关系的类型理论。
We show that certain diagrams of ∞-logoses are reconstructed in homotopy type theory extended with some lex, accessible modalities, which enables us to use plain homotopy type theory to reason about not only a single ∞-logos but also a diagram of ∞-logoses. This also provides a higher dimensional version of Sterling's synthetic Tait computability – a type theory for higher dimensional logical relations.