Border Bases in the Rational Weyl Algebra
Carlos Rodriguez and Anna-Laura Sattelberger
边界基地是通用的Gröbner基地多项式环。 在这篇文章中,我们介绍了线性差分运算体的非交换环的边界基,即合理的Weyl代数。 我们详细阐述了它们的属性,并提出了与他们一起计算的算法。 我们应用这个理论明确地表示可集成的连接为循环 D 模块。 作为一个应用,我们访问微分方程背后的字符串,一个费曼以及宇宙学积分。 我们还解决了固定全息等级的特定D-ideals的分类,即具有恒定系数的线性PDE以及Frobenius理想的情况。 我们的方法基于希尔伯特在亲和空间中的点方案理论。
Border bases are a generalization of Gröbner bases for polynomial rings. In this article, we introduce border bases for a non-commutative ring of linear differential operators, namely the rational Weyl algebra. We elaborate on their properties and present algorithms to compute with them. We apply this theory to represent integrable connections as cyclic D-modules explicitly. As an application, we visit differential equations behind a stringy, a Feynman as well as a cosmological integral. We also...