Residue Number System (RNS) based Distributed Quantum Multiplication
Bhaskar Gaur and Himanshu Thapliyal
量子态的乘法是量子算法和应用中经常使用的功能或子程序,使量子乘数成为量子算术的重要组成部分。 然而,量子倍增电路受到高Toffoli深度和T门使用的影响,这最终影响了他们在量子计算机上的可扩展性和适用性。 为了解决这些问题,我们建议使用基于Residue Number System(RNS)的分布式量子乘法,该系统在量子计算机或Toffoli深度和T门使用率较低的工作中执行多个量子模态乘法电路。 为此,我们提出了Quantum Diminished-1 Modulo(2^n+1)Multiplier的设计,这是基于RNS的分布式量子乘法的重要组成部分。 我们提供量子资源使用的估计值,并将其与现有的非分布式量子乘数进行比较,用于6至16个量子比特大小的输出。 我们的比较分析估计高达46.018
Multiplication of quantum states is a frequently used function or subroutine in quantum algorithms and applications, making quantum multipliers an essential component of quantum arithmetic. However, quantum multiplier circuits suffer from high Toffoli depth and T gate usage, which ultimately affects their scalability and applicability on quantum computers. To address these issues, we propose utilizing the Residue Number System (RNS) based distributed quantum multiplication, which executes multip...