Semiframes: the algebra of semitopologies and actionable coalitions
Murdoch J. Gabbay
我们引入半帧(代数结构),并研究它们与半拓扑(拓扑结构)的二元性。 分拓扑和半帧都是相对较新的发展,源于拓扑思想研究分散计算系统的新应用。 分词学通过消除开放集合的交叉点必然是开放的条件来概括拓扑。 动机来自于在分布式系统中确定可操作联盟的概念 - 一组参与者有足够的资源让其成员合作采取一些行动 - 开放集; 因为仅仅因为两组是可操作的(有采取行动的资源)并不一定意味着他们的交集是。 我们定义了类别和形态的概念,并证明了(清醒)半帧和(空间)半拓扑之间的绝对二元性,并且我们研究了与理解分散系统相关的关键良好性能,跨二元性转移(或不转移)的关键良好性能。
We introduce semiframes (an algebraic structure) and investigate their duality with semitopologies (a topological one). Both semitopologies and semiframes are relatively recent developments, arising from a novel application of topological ideas to study decentralised computing systems. Semitopologies generalise topology by removing the condition that intersections of open sets are necessarily open. The motivation comes from identifying the notion of an actionable coalition in a distributed syste...