42digest首页
面向TQFT不变量的复杂性理论二分法

Towards a complexity-theoretic dichotomy for TQFT invariants

Nicolas Bridges (Purdue) and Eric Samperton (Purdue)

arXiv
2025年3月4日

我们证明,对于任意固定的(2+1)维复TQFT(无论是Turaev-Viro-Barrett-Westbury型还是Reshetikhin-Turaev型),在闭3-流形上(精确)计算其不变量的问题要么可以在多项式时间内求解,要么从该TQFT的融合范畴构建的某些张量的(精确)收缩是#𝖯-困难的。我们的证明应用了Cai和Chen [J. ACM, 2017]关于复加权约束满足问题的二分结果。我们将重新解释Cai和Chen区分两种情况(即#𝖯-困难的张量收缩与多项式时间不变量)的条件,将其转化为融合范畴的术语,留待未来工作。我们期望通过更多努力,我们的归约可以得到改进,从而直接获得3-流形的TQFT不变量的二分法,而不是针对从TQFT融合范畴构建的更一般的张量。

We show that for any fixed (2+1)-dimensional TQFT over ℂ of either Turaev-Viro-Barrett-Westbury or Reshetikhin-Turaev type, the problem of (exactly) computing its invariants on closed 3-manifolds is either solvable in polynomial time, or else it is #𝖯-hard to (exactly) contract certain tensors that are built from the TQFT's fusion category. Our proof is an application of a dichotomy result of Cai and Chen [J. ACM, 2017] concerning weighted constraint satisfaction problems over ℂ. We leave for f...