Partitioning ℤ_sp in finite fields and groups of trees and cycles
Nikolaos Verykios, Christos Gogos
本文研究了环 ℤ_sp 的代数和图论结构,重点分析其分解为有限域、核和特殊子集的方式。我们建立了 𝔽_s 与 p𝔽_s 之间的经典同构,以及 p𝔽_s^⋆ 与 p𝔽_s^+1,⋆ 之间的同构。我们引入了弧和根树的概念来描述 ℤ_sp 的预周期结构,并证明了以不被 s 或 p 整除的元素为根的树可以通过乘以循环弧从单位树生成。此外,我们定义并分析了集合 𝔻_sp,该集合包含既不是 s 或 p 的倍数也不是"差一"元素的元素,并证明其图分解为环和预周期树。最后,我们证明了 ℤ_sp 中的每个环都包含内环,这些内环可以从有限域 p𝔽_s 和 s𝔽_p 的环中可预测地导出,并讨论了 𝔻_sp 的密码学相关性,强调了其在分析循环攻击和因式分解方法方面的潜力。
This paper investigates the algebraic and graphical structure of the ring ℤ_sp, with a focus on its decomposition into finite fields, kernels, and special subsets. We establish classical isomorphisms between 𝔽_s and p𝔽_s, as well as p𝔽_s^⋆ and p𝔽_s^+1,⋆. We introduce the notion of arcs and rooted trees to describe the pre-periodic structure of ℤ_sp, and prove that trees rooted at elements not divisible by s or p can be generated from the tree of unity via multiplication by cyclic arcs. Furth...