圆形弧线和弧线的专题讨论会
Symplectification of Circular Arcs and Arc Splines
Stefan Gössner
arXiv
2025年8月11日
在这篇文章中,圆形弧形被认为是单独和分段圆曲线的元素。 端点参数化在这里被证明是非常有利的。 共曲几何的视角为圆形弧线提供了新的矢量关系。 曲线被认为是其相邻的圆形元素各有一个共同的终点,或者,此外,一个共同的切线。 这些电弧线被证明是一个单参数曲线家族,因此可以根据各种标准优化此参数。
In this article, circular arcs are considered both individually and as elements of a piecewise circular curve. The endpoint parameterization proves to be quite advantageous here. The perspective of symplectic geometry provides new vectorial relationships for the circular arc. Curves are considered whose neighboring circular elements each have a common end point or, in addition, a common tangent. These arc splines prove to be a one-parameter curve family, whereby this parameter can be optimized w...