Interval Decomposition of Infinite Persistence Modules over a Principal Ideal Domain
Jiajie Luo and Gregory Henselman-Petrusek
我们在一个主要理想领域研究点自由且有限生成的持久性模块,该模块由(可能是无限)完全有序的poset类别索引。 我们表明,如果并且只有当每个结构图都有免费的焦内核时,这些持久化模块才会允许间隔分解。 我们还表明,在无躯干设置中,拓扑空间过滤的整数持久同源模块承认间隔分解,只有当相关的持久性图与系数字段的选择不一时。 这些结果概括了索引类别有限时之前的工。
We study pointwise free and finitely-generated persistence modules over a principal ideal domain, indexed by a (possibly infinite) totally-ordered poset category. We show that such persistence modules admit interval decompositions if and only if every structure map has free cokernel. We also show that, in torsion-free settings, the integer persistent homology module of a filtration of topological spaces admits an interval decomposition if and only if the associated persistence diagram is invaria...